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Fig. 9. Vanation of I'* as a function of z at 10 GHz.

the modes at 1 GHz for a three-line configuration using both the
spectral Galerkin and the quasi-static approaches, and a compari-
son is made in Table I. At this comparatively low frequency, the
two methods are in excellent agreement. At higher frequencies,
however, the quasi-static method is expected to break down, since
it is a frequency-independent theory, and the propagation con-
stants will be constant with respect to frequency.

This point is demonstrated in Fig. 2, where the five propa-
gation constants of a five-strip system are plotted as a function of
frequency. At low frequencies, the curves are level, as would be
expected by quasi-static theory. At higher frequencies, however,
the propagation constants are no longer constant, indicating that
a frequency-dependent theory is now necessary.

Next, we checked the convergence of the calculated propa-
gation constants with respect to the number of modes. These
results, shown in Table II, demonstrate a very rapid convergence
with respect to the number of modes and suggest that probably
one basis function of each type (N, = N, =1) will be sufficient for
most calculations.

In order to get a physical feel for the shape of the five modes,
we have plotted J, as a function of x over a cross section of the
strip for each of the five modes. These are shown in Figs. 3-7 for
N, = N,=1 (dotted line) and for N,=N,=3 (solid line). We
note that for most of he modes, we may obtain a very reasonable
representation of the currents with just one basis function of each
type.

Finally, we demonstrate the coupling of current from one strip
to the next. In Fig. 8, we present results for the configuration of
Fig. 1 at 1 GHz, and in Fig. 9 at 10 GHz. We start with a unit
excitation on one of the end strips, say the first one from the left,

and note that the current on the first strip very rapidly decreases,
while the current on the other strips rapidly increases. Thus,
when microstrips are closely spaced, the coupling between strips
is predicted to be quite large.

V. CONCLUSIONS

In this paper, a frequency-dependent method of calculating the
coupling between a large number of parallel microstrips has been
demonstrated. Using this method, it has been shown that cou-
pling between closely spaced lines can be quite severe. This has
significance in the area of VLSI interconnectivity, where micro-
strip lines are packed as densely as possible.

REFERENCES

[11 H. A. Wheeler, “Transmission-line properties of parallel strips separated
by a dielectric sheet,” TEEE Trans Microwave Theory Tech., vol. MTT-13,
pp- 172-185, Mar. 1965.

[2] T. G Bryant and J. A. Weiss, “Parameters of microstrip transmission
lines and of coupled pairs of mucrostrip lines,” IEEE Trans. Microwave
Theory Tech., vol. MTT-16, pp. 1021-1027, Dec. 1968.

[3] E. Yamashita and R Mittra, “Variational method for the analysis of
microstrip lines,” TEEE Trans. Microwave Theory Tech., vol. MTT-16,
pp- 251-256, Apr. 1968.

[4] Y. Rahmat-Samii, T. Itoh, and R Mittra, “A spectral domain technique
for solving coupled microstrip line problems,” Arch. Elek. Ubertragung.,
vol. 27, pp. 69-71, Feb. 1973.

[5] F.Y.Chang, “Transient analysis of lossless coupled transmission lines in
a nonhomogeneous dielectric medwum,” TEEE Trans. Microwave Theory
Tech., vol. MTT-18, pp. 616-626, Sept. 1970.

[6] C.W. Ho, “Theory and computer-aided analysis of lossless transmission
lines,” IBM J. Res. Develop., vol. 17, pp. 249-255, May 1973.

[7]1 J. Chilo and T. Arnaud, “Coupling effects in the time domain for an
interconnecting bus in high speed GaAs logic arcwits,” TEEE Trans.
Electron Devices, vol. ED-31, pp. 347~352, Mar. 1984,

[8] Cao Wei er al., “Multiconductor transmission lines in multilayered
dielectric media,” TEEE Trans. Microwave Theory Tech., vol. MTT-32,
pp. 439-449, Apr. 1984

[9] C. Chan and R. Mittra, “Spectral iterative techniques for analyzing
multiconductor microstrip lines,” in JEEE MTT Symp. Dig., May 1984,
pp. 463-465.

[10] L.-P. Schmidt and T. Itoh, “Spectral domain analysis of dominant and
higher order modes in fin-lines,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-28, pp. 981-985, Sept. 1980.

[11] D. Mirshekar-Syahkal and J. Brian Davies, “Accurate solution of micro-
strip and coplanar structures for dispersion and for dielectric and con-
ductor losses,” TEEE Trans. Microwave Theory Tech , vol MTT-27, pp.
694-699, July 1979.

[12] T. Itoh, “Spectral domain irnmitance approach for dispersion character-
istics of generalized printed transmission lines,” IEEE Trans Microwave
Theory Tech., vol MTT-28, pp. 733-736, July 1980.

[13] P. Bhartia and 1. J. Bahl, Millimeter Wave Engineering and Applications.
New York: Wiley, 1984, pp. 379-380.

Comparison of Absorption Loss in Metal-Clad
Optical Waveguides

S.J. AL-BADER anp H. A. JAMID

Abstract — A comparison of the absorption loss performance of three
types of metal-clad slab waveguides is made with the material and wave-
guide properties standardized. The basic three-layer configuration of the
step-index waveguide and two graded-index waveguides is considered; the
latter two are also considered as two-layer structures. The comparative loss
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behavior is discussed from the point of view of application in mode and
polarization filtering.

1. INTRODUCTION

Metal-clad wavegnides are important in integrated optics be-
cause of the variety of functions that they offer. Most frequently,
the inclusion of metals into optical circuits is such that the metals
act as electrodes. However, metal-clad waveguides are also of
interest as mode filters and polarizers in other applications. Two
types of metal-clad slab waveguides have been studied in their
basic configuration, i.e., as three-layer structures with the metal-
cladding forming one of the layers. These are the step-index slab
waveguides (SISW) [1]-{4], and the graded-index slab waveguides
(GISW) [5]-[7]. The important features have been the loss perfor-
mance of TE and TM modes and, in particular, the dependence
of the loss of guided modes on the mode order and waveguides
depth. The results show that the attenuation of TM modes is
approximately an order of magnitude greater than that of TE
modes and that the dependence of loss on the waveguides for the
SISW is different from that of GISW. In particular, for a SISW
of depth a, the loss varies as a~* and for a GISW with a linearly
graded layer it varies as a ', while for the GISW with a para-
bolic layer the loss varies with a~%/2. The results also indicate
that the loss behavior exhibits dependence on mode order for
most waveguides, and on the index profile in the case of GISW.

Although most of the reported results are obtained for the
wavelength 0.6328 pm, different material and waveguide parame-
ters are generally used, making it difficult to establish a quantita-
tive comparison of loss performance. It is thus of interest to
compare the loss of SISW’s and GISW’s when material and
waveguide properties are standardized. In this work, the loss of
the SISW is compared with that of two types of GISW’s, one
having a linearly graded layer and the other a parabolic layer.
The GISW’s serve as models of waveguides obtained by diffusion
with the two profiles being first approximations to the comple-
mentary error function and the Gaussian profiles, respectively.

In order to illustrate the role of the basic waveguide parameters
in determining the loss, all waveguides are considered in their
basic three-layer configurations. However, the GISW’s are also
considered as two-layer structures by allowing the graded regions
to extend to infinity. Such models are easier to describe analyti-
cally and are shown here to give accurate results of loss for
well-guided modes.

Finally, a comparison of expected performance of all three
types of waveguides in applications in mode and polarization
filtering is made in light of their obmic loss characteristics.
Throughout the work, scatter losses are neglected.

II. THEORY

With a being the depth of the slab waveguide, the refractive-
index distributions of the three waveguides considered are given
below.

1) Step:
n(x)=n%, x<0
=nl, O0<x<a
—nj, x>a. )

2} Linear Layer:
n*(x) =n2, x>0
{ X
=n8[l+2A(—-)], —a<x<0
a
x<-a. (2)

— 5l
=ns,

3) Parabolic Layer:
n*(x)=n’ x<0

Py

x1\2
=n(2)[1—2A(—) ]‘, O<x<a
a

=n3, x>a. 3)
Only the refractive index of the metal cladding n,, is taken to be
complex and written as n2 = n’2 + in’>. This notation is also
used for the propagation constant 8 = kny, so that 82 =82+
iB”* and ni; = n’% + in’3. Equations (2) and (3) describe the
GISW’s with the graded layer truncated. When these are analyzed
as two-layer structures, the graded layers are allowed to extend to
infinity in one direction so that the truncations of x=— g for
model 2) and x =a for model 3) are removed. The eigenequa-
tions of the different waveguide models are derived from the
scalar wave equation after the imposition of apptropriate boundary
conditions. Details of the derivation are found in the literature
{31, [5], [8], and only the necessary relationships are given here. It
is assumed that all the time-harmonic field quantities are uniform
in the y-direction.

In the numerical results section that follows, the eigenequa-
tions are solved by Muller’s algorithm [9] with the eigenvalues
corresponding to attenuated fields in the Z-direction. The eigen
equations for the three waveguides under consideration are as
follows.

1) Step:

(Q?— PR)sinaQ = Q(P+ R)cosaQ, for TE modes (4)
(n3n2,0* = ni PR) sin aQ = Qn3( P2, + Rn%)cosaQ,
for TM modes  (5)
2) Linear Laver:
S47(—§) — RA, (= &) _ SB/(—£0)— RB,(— &)
SA(-€)+PA(-&) SB/(—§&,)+PB(-£,)’
for TE modes (6)

"
P

Rng A
SA;(_go)_(n—z'{';)Az(_go)

n

A
SA:(*sa>+(P—f°—)A,(—sa)
an2

Rni A
— | B(-&)

m a

src-a0-|

s

nol

SB/( - fa)'*(P“_)B,(-Sa)
an,

for TM modes. (7)

For the extended linear layer waveguide, (6) and (7) reduce to the
following two equations:

SA,(—£,) =RA,(—£,), for TEmodes (8)
and

Rni A
SA(— &) = _n_2_+— A, (~&), for TMmodes (9)

m a

where A4, and B, are the Airy functions.



312 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 2, FEBRUARY 1986

3) Parabolic Layer: (1) Extended parabalic
12 (2) Truncated parabolic
kx '—pRF 10 (3) Truncated linear
kXI/Z Dy/(llja)___l 5 DV/(_.‘I/“)} (4) Extended linear
kx'/? + pRF (5) step
> kxl/z—pRFD( )
= P +— v - b
v(‘l/a) kX1/2+pRF ¢a

for TE & TM modes (10)

where D, are the parabolic cylinder functions. For the extended
parabolic layer waveguide, (10) can be shown to reduce to [7] .

F(%) _ (XK

11)
1-v» (
(5 :
2 s
In the above case, as in the case of the extended linear layer .
model, the parameter a serves as a measure of waveguide depth.
The various quantities are defined by the following: 107!
Q2=k2(n%)_ngff) (12)
P2 =k (nl; — n3) (13)
R2=k2(ngff -nzn) (14)
2.2 1/3
S=(2k*n3A/a) (15)
£, =0%/8* (16) 1072
5 en ! 2 3 b 5 3 7 8 9 10 afum)
§,=—P7/S (17) Fig. 1. B” of the TE, mode.
X = 2ny24 Jak (18)
0 1
- - 19
Ty 2 (19)
T v 2x10? (1) Extended parabolic
2 (5) (2) Truncated parabolic
F= 1-v» (20) (3) Truncated tinear
\/EI‘( ) 102 (4) Extended linear
2 (5) step
¥, = kax'/? (21)
1, for TE modes
= { n3/n2,, for TM modes’ (22) (2)
The objective is to find the complex roots of (4)—(11).
10 (n
III. NUMERICAL RESULTS AND DISCUSSION
All the results presented here are obtained for waveguides with ~ (3)

the following parameters; n}=15.2941, n}=>5.2441, and n2 =
—10.3-i1.0, which corresponds to gold cladding at A = 0.6328
pm. The parameter of interest is §”7, the imaginary part of the
propagation constant. Above cutoff, the occurrence of this
parameter is due to the complex nature of the metal refractive
index, which also renders the eigenequations complex and makes 1
an insight into the loss behavior other than through numerical

means difficult. The known dependence of loss on waveguide

depth for models 1)-3) is that their loss is proportional to a3

[2], a ! [5], and a /% [7], respectively. The variation of 8 of

the first two TE and TM modes with waveguide depth is shown

in Figs. 1-4. The different 8 values for the index profiles shown

are due to the different values of the fractional mode energy
penetrating the metal. Also shown in these figures is the variation o- 1
of loss of the extended linear and parabolic layer models. It is ooz 3 k5 6 7 8 9 10 alum)
observed that these models give accurate descriptions of loss for Fig. 2. £” of the TM; mode.

cm

(4)
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Fig. 5. Difference in the attenuation parameters of the two lowest order
modes.

well-guided modes. The variation of the real part B’ is not
discussed here. However, it is noted that the metallic loss may be
neglected in the evaluation of B’. Treatment of the lossless case
for the relevant index profiles is found in [10].

The two features of interest are the mode discrimination and
polarization discrimination performance of the three waveguides.
In these respects, waveguide 2) is known to exhibit no loss
dependence on mode order [5]. This property of the waveguide is
well verified by the results of Figs. 1-4, and makes this wave-
guide unsuited for mode-filtering applications, where only low-
order modes are required to pass. However, both waveguides 1)
and 3) show mode dependence of loss. As a quantative measure
of mode discrimination, the ratio of the amplitude of mode 1 to
that of mode 0 is considered. The important parameter is 8{’ -85’
of modes of the same polarization and is shown plotted against
waveguide depth in Fig, 5. It is seen that the TM cases show
higher discrimination than TE cases. This is to be expected as
modal discrimination increases with modal loss. The SISW wave-
guide gives higher TM-mode discrimination than the parabolic
layer waveguide, but the situation is reversed for well-guided TE
modes. The accuracy of the results is checked by calculating the
ratios By"/B4 of well-guided modes of the same polarization from
Figs. 1-4. These are found to be 4 for waveguide 1) and 1.5 for
waveguide 3): Both results verify theoretical calculations [4],
[Appendix].
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In a similar manner to the above, a measure of polarization
discrimination is taken to be the ratio of the amplitudes of TM,,
modes to those of TE, modes. The important parameter in this
case is BYy,~B%g, which is shown plotted in Fig. 6. All three
waveguides are seen to give polarization discrimination with the
SISW having the highest ratio in the range of depth considered.

IV. CONCLUSIONS

The important loss mechanisms in slab waveguides are absorp-
tion and scatter processes with the latter having bulk and surface
contributions. In applications utilizing loss, both mechanisms
must be evaluated, and, thus, the application of both step-index
and graded-index structures must be considered.

In mode-filtering applications, absorption-loss considerations
show that the index profile of GISW’s is an important design
parameter. In particular, the quantity 8{'— 8§’ of guided TE and
TM modes is positive for the SISW and the GISW with the
parabolic layer, but is zero for the GISW with the linear layer.
Published results indicate that this parameter becomes negative
for the metal-clad waveguide with exponentially graded layer [6].
In the case of the present work, the largest values of B{'— B¢’ are
obtained with the SISW for TM modes and the GISW with the

parabolic layer for TE modes in the range of waveguide depth
considered. However, all three waveguides considered exhibit
polarization discrimination with the SISW giving the largest
values.

APPENDIX

In order to solve for n?%; for the parabolic layer waveguide, the

left-hand side of (11) is written in the expanded form [7]
i 4 -V 14
) 53
2 ) _\2 2
1_
1
2
1=t 2)(1- 21+ 2
a=nfie)=5)(g) -

=y+icd (A1)
where for the purpose of derivation
ni—nZ 1
v=n+i8=u—~ (A2)

2

with y being the real part of the expansion and o is a parameter
to be calculated. By using the imaginary parts of (Al) and (A2)
and the right-hand side of (11), we obtain

1/2
72 (2X3)

eff =

1

Im . A3

[("gff‘nzm)P] (43)
Observing that the right-hand side of (11) is much smaller than
unity for the cases of interest, % is assumed to take up the values
of 1,3,5---, ie., those corresponding to the singularities of
T'(1—v»)/2) in the lossless case. Substituting from (A2) for »
into (Al), the parameter ¢ is found to order § where § < 1. The
values of o for the first five lowest order modes are found to be:
Var, 1.18194, 0.94530, 0.81026, 0.72023. Calculation of % from
(A3) is completed by noting that n'% =~ n3.
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