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Fig. 8, Variation of I* as a function of z at 1 GHz.
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Fig, 9. Varration of I* as a function of z at 10 GHz.

the modes at 1 GHz for a three-line configuration using both the

spectral Galerkin and the quasi-static approaches, and a compari-

son is made in Table I. At this comparatively low frequency, the

two methods are in excellent agreement. At higher frequencies,

however, the quasi-static method is expected to break down, since

it is a frequency-independent theory, and the propagation con-

stants will be constant with respect to frequency.

This point is demonstrated in Fig. 2, where the five propa-

gation constants of a five-strip system are plotted as a function of

frequency. At low frequencies, the curves are level, as would be

expected by quasi-static theory. At higher frequencies, however,

the propagation constants are no longer constant, indicating that

a frequency-dependent theory is now necessary.

Next, we checked the convergence of the calculated propa-

gation constants with respect to the number of modes. These

results, shown in Table II, demonstrate a very rapid convergence

with respect to the number of modes and suggest that probably

one basis function of each type (N, = ~, =1) will be sufficient for

most calculations.

In order to get a physical feel for the shape of the five modes,

we have plotted J= as a function of x over a cross section of the

strip for each of the five modes. These are shown in Figs. 3–7 for

N, = NY =1 (dotted line) and for N,= N, = 3 (solid line). We

note that for most of he modes, we may obtain a very reasonable

representation of the currents with just one basis function of each

type.

Finally, we demonstrate the coupling of current from one strip

to the next. In Fig. 8, we present results for the configuration of

Fig. 1 at 1 GHz, and in Fig. 9 at 10 GHz. We start with a unit

excitation on one of the end strips, say the first one from the left,

and note that the current on the first strip very rapidly decreases,

while the current on the other strips rapidly increases. Thus,

when microstrips are closely spaced, the coupling between strips

is predicted to be quite large.

V. CONCLUSIONS

In this paper, a frequency-dependent method of calculating the

coupling between a large number of parallel microstrips has been

demonstrated. Using this method, it has been shown that cou-

pling between closely spaced lines can be quite severe. This has

significance in the area of VLSI interconnectivity, where micro-

strip lines are packed as densely as possible.
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Comparison of Absorption Loss in Metal-Clad

Optical Waveguides

s. J. AL-BADER AND H, A. JAMID

Abstract —A comparison of the absorption loss performance of three

types of metal-clad slab wavegnides is made with the material and wave-

guide properties standardized. The basic three-layer configuration of the

step-index waveguide and two graded-index waveguides is considere~ the

latter two are also considered as two-layer structures. The comparative loss
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behavior is discussed from the point of view of application in mode and

polarization filtering.

1. INTRODUCTION

Metal-clad wavegttides are important in integrated optics be-

cause of the variety of functions that they offer. Most frequently,

the inclusion of metals into optical circuits is such that the metals

act as electrodes. However, metal-clad waveguides are also of

interest as mode filters and polarizers in other applications. Two

types of metal-clad slab wavegnides have been studied in their

basic configuration, i.e., as three-layer structures with the rnetal-

cladding forming one of the layers. These are the step-index slab

waveguides (SISW) [1]–[4], and the graded-index slab waveguides

(GISW) [5]-[7]. The important features have been the loss perfor-

mance of TE and TM modes and, in particular, the dependence

of the loss of guided modes on the mode order and waveguides

depth. The results show that the attenuation of TM modes is

approximately an order of magnitude greater than that of TE

modes and that the dependence of loss on the waveguides for the

SISW is different from that of GISW. In particular, for a SISW

of depth a, the loss varies as a – 3 and for a GISW with a linearly

graded layer it varies as a-1, while for the GISW with a para-

bolic layer the loss varies with a- 3jz. The results also indicate

that the loss behavior exhibits dependence on mode order for

most waveguides, and on the index profile in the case of GISW.

Although most of the reported results are obtained for the

wavelength 0.6328 pm, different material and waveguide parame-

ters are generally used, making it difficult to establish a quantita-

tive comparison of loss performance. It is thus of interest to

compare the loss of SISW’S and GISW’S when materiaf and

waveguide properties are standardized. In this work, the loss of

the SISW is compared with that of two types of GISWS, one

having a linearly graded layer and the other a parabolic layer.

The GISWS serve as models of waveguides obtained by diffusion

with the two profiles being first approximations to the comple-

mentary error function and the Gaussian profiles, respectively.

In order to illustrate the role of the basic waveguide parameters

in determining the loss, all waveguides are considered in their

basic three-layer configurations. However, the GISW’S are also

considered as two-layer structures by allowing the graded regions

to extend to infinity. Such models are easier to describe analyti-

cally and are shown here to give accurate results of loss for

well-guided modes.

Finally, a comparison of expected performance of all three

types of wavegnides in applications in mode and polarization

filtering is made in light of their ohmic loss characteristics.

Throughout the work, scatter losses are neglected.

11. hORY

With a being the depth of the slab waveguide, the refractive-

index distributions of the three waveguides considered are given

below.

1) Step:

?#(x) = n;, X<o

=n; , ()<x<a

=4+ x>a.

2) Linear Layer:

77(X)=7?:, X>o

‘“’[1 +2A(:)I, ‘a<x<o

(1)

=~;, x<—a. (2)

3) Parabolic Lqyer:

n~(x)=nj, X<(I

‘n’l’-2A(:rl ‘<x<a

En;, x>a. (3)

Only the refractive index of the metal cladding nm is taken to be

complex and written as n ~ = n; + in~,~. This notation is also

used for the propagation constant /3 = lcn,.,~~,so that ~z = ~’z +

i~”z and n~~~= n~~ + in~~. Equations (2) and (3) describe the

GISW’S with the graded layer truncated. When these are analyzed

as two-layer structures, the graded layers are allowed to extend to

infinity in one direction so that the truncations of x = — a for

model 2) and x = a for model 3) are removed. The eigenequa-

tions of the different wavegttide models are derived from the

scalar wave equation after the imposition of appropriate boundary

conditions. Details of the derivation are found in the literature

[3], [5], [8], and only the necessary relationships are given here. It

is assumed that all the time-harmonic field quantities are uniform

in the y-direction.

In the numerical results section that follows, the eigenequa-

tions are solved by Muller’s algorithm [9] with the eigenvalues

corresponding to attenuated fields in the Z-direction. The eigen

equations for the three waveguides under consideration are as

follows.

1) Step:

(Q2 - PR)sinaQ=Q(P+ R)cosaQ, forTE modes

(n~rz~Q’ - nfPR)sinaQ=Qn~(Pn~ + Rn~)cosaQ.

2)

for TM modes

Linear Layer:

S4; (– fo)– RA, (=&o) _ Sll; (--&o )-RB, (-fo)

sA:(-&)+PA, (-.$d) - Sll:(--ga )+PB, (-&a) ‘

for TE modes

()

Rn~ A
sAf(–&)- —+; A,(–$o)

n ~,

(1

“OA
sA:(– &a)+ P–— an2 ‘r(–~. )

(4)

(5)

(6)

()Rn~ A
Sq( – $.) – -J-+; Br(–?$o)

m.

(1

noA
Sl?; (-fa)-t P– ~ B,(–ga) ‘

for TM modes. (7)

For the extended linear layer waveguide, (6) and (7) reduce to the

following two equations:

sA; (–&)) =RA, (-&), for T’13 modes (8)

and

()
Rn~ A

SA; (–fO) = ~+; A,(–$o), for TM modes (9)
m

where A, and B, are the Airy functions.
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3) Parabolic Layer:

10

[

k#2 – pRF
= –P Dv(+. )+ kxl/2

1
D.(– Y.) >

+ pRF

for TE & TM modes (10)

where Dv are the parabolic cylinder functions. For the extended

parabolic layer waveguide, (10) can be shown to reduce to [7] 1

()r+ _ (2x1/2) k

1–v – Rp

(1

(11)

r—
2

T
,5:

In the above case, as in the case of the extended linear layer L

model, the parameter a serves as a measure of waveguide depth.

The variou~ quantities are defined by the following:

Q2=k’(n; -n~ff)

pz=kz(n~ff -n;)

( m)
R2 = k2 &f – n2

S=(2k2n:A/’a)”3

,tO = Q2/@

‘LU = - p2/#

x = 2nO~/ak

Q~ ~

v=~–~

-r(~)

IL]

#u= kaxl/2

( for TE modes
~= 1;

nO/n~, for TM modes”

The objective is to find the complex roots of (4)-(11).

III. NUMERICAL RESULTS AND DISCUSSION

10-’

(12)

(13)

(14)

(15)

(16) ,.-,

(17)

(18)

(19)

2K102

(20)

102

(21)

(22)

10

All the results presented here are obtained for waveguides with _

the following parameters: n; = 5.2941, n; = 5.2441, and n; = ‘,

– 10.3- il.0, which corresponds to gold cladding at X = 0.6328 ~

~m. The parameter of interest is /3”, the imaginary part of the L

propagation constant. Above cutoff, the occurrence of this

parameter is due to the complex nature of the metal refractive

index, which also renders the eigenequations complex and makes 1

an insight into the loss behavior other than through numerical

means difficult. The known dependence of loss on waveguide

depth for models 1)–3) is that their loss is proportional to a-3

[2], a-1 [5], and a-3/2 [7], respectively. The variation of ~“ of

the first two TE and TM modes with waveguide depth is shown

in Figs. 1–4. The different j3° values for the index profiles shown

ae due to the different values of the fractional mode energy

penetrating the metal. Also shown in these figures is the variation ,.-1

of loss of the extended linear and parabolic layer models. It is

observed that these models give accurate descriptions of loss for

(1) Extended Parab.l, c

(2) Truncated parabolic

(3) Truncated linear

(4) Extended linear

(5) Step

(5)

(1)

(4

(3)

Fig. 1. &’ of the TEO mode.
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Fig. 2. ~ of the TMO mode.
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Fig. 5. Difference in the attenuation parameters of the two lowest order

modes.

well-guided modes. The variation of the real part ~’ is not

discussed here. However, it is noted that the metallic loss maybe

neglected in the evaluation of ~’. Treatment of the lossless case

for the relevant index profiles is found in [10].

The two features of interest are the mode discrimination and

polarization discrimination performance of the three waveguides.

In these respects, waveguide 2) is known to exhibit no loss

dependence on mode order [5]. This property of the waveguide is

well verified by the results of Figs. 1-4, and makes this wave-

guide unsuited for mode-filtering applications, where only low-

order modes are required to pass. However, both waveguides 1)

and 3) show mode dependence of loss. As a quantative measure

of mode discrimination, the ratio of the amplitude of mode 1 to

that of mode O is considered. The important parameter is /3:-/?/

of modes of the same polarization and is shown plotted against

waveguide depth in Fig. 5. It is seen that the TM cases show

higher discrimination than TE cases. This is to be expected as

modal discrimination increases with modal loss. The SISW wave-

guide gives higher TM-mode discrimination than the parabolic

layer waveguide, but the situation is reversed for well-guided TE

modes. The accuracy of the results is checked by calculating the

ratios /3f’/~~ of well-guided modes of the same polarization from

Fire. 1–4. These are found to be 4 for wavemide l) and 1.5 for

w~veguide 3): Both results verify theoreti~al calculations [4],

Fig. 4. w of the TMI mode. [App~ndix].
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In a similar manner to the above, a measure of polarization

discrimination is taken to be the ratio of the amplitudes of TMO

modes to those of TEO modes. The important parameter in this

case is ~;~O– /3~~0, which is shown plotted in Fig. 6. All three

waveguides are seen to give polarization discrimination with the

SISW having the highest ratio in the range of depth considered.

IV, CONCLUSIONS

The important loss mechanisms in slab waveguides are absorp-

tion and scatter processes with the latter having bulk and surface

contributions. In applications utilizing loss, both mechanisms

must be evaluated, and, thus, the application of both step-index

and graded-index structures must be considered.

In mode-filtering applications, absorption-loss considerations

show that the index profile of GISWS is an important design

parameter. Inparticular, thequantity l?~’-ll~’ of guided TE and

TM modes is positive for the SISW and the GISW with the

parabolic layer, but is zero for the GISW with the linear layer.

Published results indicate that this parameter becomes negative

for the metal-clad waveguide with exponentially graded layer [6].

Inthecase of thepresent work, thel~gest vduesof~~'-~~' are

obtained with the SISW for TM modes and the GISW with the

parabolic layer for TE modes in the range of waveguide depth

considered. However, all three waveguides considered exhibit

polarization discrimination with the SISW giving the largest

values.

APPENDIX

Inorder tosolveforn~f fortheparabolic layer waveguide, the

left-hand side of (11) is written in the expanded form [7]

‘(a ‘(+(1+3
l–v =

()
r——

G

2

.(l-V)(l+;)(l-;)(

=y+io8

where for the purpose of derivation

(A2)

with y being the real part of the expansion and u is a parameter

to recalculated. Byusing theimaginary parts of(Al)and(A2)

and the right-hand side of (11), weobtam

n,l; = (h’)’”
e

u
lm[@ff~n%l ‘A’)

Observing that theright-hand side of (11) is much smaller than

unity for the cases of interest, q is assumed to take up the values

of 1,3,5 ..., i.e., those corresponding to the singularities of

r((l–v)/2) in the lossless case. Substituting from (A2) for v

into (Al), the parameter a is found to order 8 where 8 <<1. The

values of u for the first five lowest order modes are found to be:

fi, l.18194, 0.94530, 0.81026, 0.72023. Cdculationofn~, from

(A3) is completed by noting that n~~~= n:.
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